

Igor Pogorelsky

Accelerator Test Facility status and near-term plans

Outline

- Introduction : ATF unique capabilities
- What's new since 16th User meeting?
 - Administrative changes
 - Sampling of user accomplishments
 - Survey of active, finished and proposed experiments
 - Ongoing upgrades
 - ATF II
- Conclusion Introduction to ATF II Upgrade Workshop

Provides users with unique combination of high brightness electron- and laser- beams

E-beam instrumentation

Mask technique

Unique IR lasers

Diversity in addressing needs of the accelerator community

ATF timeline since 16th User Meeting

- April 2012
 16th ATF User Meeting.
 New Scientific Program Director.
- September 2012
 New ATF Director.
- April 2013
 ATF move from Physics Dept. to C-AD.
- May 2013
 DOE's call for the ATF Upgrade Proposal.
- July 2013
 APAC in special meeting made recommendations on ATF upgrade.
- October 2013
 Laser Advisory Panel made
 recommendations on 100TW laser upgrade.

- October 2013
 ATF Upgrade Proposal presented to DOE.
- February 2014
 DOE decision to fund the Stage I upgrade.
- March 2014
 ATF recognized as the flagship user facility on Accelerator Stewardship.
- June 2014
 BNL funds Program Development project on the CO₂ laser upgrade.
- July 2014
 DOE funds available in the BNL financial plan.
 Facility's 3-year upgrade starts.
- October 2014
 17th ATF User Meeting.

Science advancements since 16th User meeting

- First demonstration of mass-shift effect and multiple harmonics in inverse Compton scattering.
- Record-high acceleration gradient (100 MeV/m) and energy gain (50 MeV) from inverse FEL electron accelerator.
- Demonstration of energy chirp compensation in the electron beam by Wake Fields.
- Demonstration and study of a Plasma Wake Field in the Quasi-Nonlinear regime.
- Detailed study of a Shock Wave ion acceleration regime using two laser pulses impinging on a supersonic gas jet.
- Demonstration of 10% wall-plug efficiency in producing trains of picosecond pulses inside the ${\rm CO_2}$ laser amplifier cavity aimed towards building a high-power Compton radiation source.
- Developing and partial verification of a novel ultra-fast CO₂ laser concept.
 With this laser the ATF contribution to the cutting-edge advanced accelerator research will change dramatically.

RUBICON - IFEL accelerator

(CO₂ and e-beam co-propagation in helical tapered undulator)

Up to 50 MeV (100 MeV/m) to compare with previous IFEL record of 15 MeV

25 % capture @ >90 MeV 93.7 MeV mean, 2.0 % energy spread

Shock Wave Proton Acceleration

Imperial College London

Laser-induced electrostatic shock reflects protons upon its propagation through the ionized H₂ jet.

- Energy spread 10%
- •Spectral brightness up to 10⁹ proton/MeV/str
- Proton energy up to to 3.2 MeV
- •First observations of ~1 MeV He+

Recent unpublished results in nonlinear Compton scattering

DWFA research

(acceleration, THz radiation, chirp correction)

PI – G. Andonian, UCLA PI – S. Antipov, Euclid

Energy spread narrows as the gap changes

57.2 57.4

Active ATF Experiments

AE31 - Multi-bunch Plasma Wakefield Acceleration, Univ. Southern California (2004).

AE35 - High-brightness picosecond ion beam. SUNY SB (2005)

AE37- An X-band, traveling wave, deflection mode cavity. Radiabeam (2007)

AE39— DWA —high-gradient dielectric wakefield acceleration experiment. UCLA (2010)

AE41 – RUBICON - helical IFEL experiment at BNL. UCLA (2009)

AE43 - PWFA Holography. Un. Austin (2009)

AE45 - Advanced imaging and ultra-fast material probing with inverse Compton scattering. INFN (2009)

AE48 - Experimental study of electron-beam microbunching dynamics. Tel-Aviv U. (2010)

AE49 - Measurement of coherent terahertz radiation using a real-time interferometer. UCLA (2010)

AE50 - Plasma Wakefields in the Quasi-Nonlinear Regime. UCLA (2012)

- FINISHED - Approved Between Meetings

AE52 - Beam Manipulation by Self-Wakefield at the ATF. Euclid Technilabs (2012)

AF53 – Nonlinear inverse Compton scattering. UCLA(2012)

AF54 – AXIS -5-um damage test. Radiabeam/UCLA (2012)

AE56 - A High-resolution Transverse Diagnostic Based on Fiber Optics. Radiabeam (2013)

AF57 - Corrugated Plate De-Chirper. SLAC (2013)

AF58 - ERL BPM Test. BNL (C-AD) (2014)

AE59 Inverse Compton Source for Extreme Ultraviolet Lithography. Radiabeam (2013)

AE60 - Ultrafast High-Brightness Electron Source, Advanced Energy Systems (2012)

AE61 - Transient Noise of MCT Detector Array Due to 70 MeV Electrons. Jet Propulsion Lab. (2014)

AF62 - Sub-femtosecond beam line diagnostics. UCLA (2014)

AE63 - Stony Brook Accelerator Laboratory Course, CASE@ATF. Stony Brook Un (2014)

AF64 - Surface Wave Accelerator and Radiation Source Based on Silicon Carbide. U. Tex. Austin (2012)

17TH ATF USER AND APAC MEETING

Tuesday, October 14, 2014

racsaay, october 11, 2011			
8:30	9:00	APAC Executive Session	
9:00	10:30	Opening and Facility Presentations	
10:30	11:00	Coffee break	
11:00	12:00	Experiment Status Reports	
12:00	13:00	Lunch break (working lunch for APAC)	
13:00	14:30	Experiment Status Reports	
14:30	15:00	Coffee break and Group Photo	
15:00	16:30	Experiment Status Reports	
16:30	17: 30	APAC Executive Session/ATF Tour #1	
18:00		User Meeting Dinner ("Sea Basin" restaurant, Rocky Point)	

Wednesday, October 15, 2014

Wednesday, October 13, 2014				
8:30	9:00	APAC Executive Session		
9:00	10:15	New Proposals		
10:15	10:45	Coffee break		
10:45	12:00	New Proposals		
12:00	13:00	Lunch break (working lunch for APAC)		
13:00	14:15	New Proposals		
14:40	15:10	Coffee break		
15:10	17:10	APAC Executive Session/ATF Tour#2		
17:30	19:00	Reception (bldg.911, lobby)		

New Proposals

- **P89** NOCIBUR: an inverse free electron laser decelerator experiment (UCLA)
- **P90** Modification of Gas Jet Density Profile with Hydrodynamic Shocks for CO2 Laser Ion Acceleration Experiment (NRL)
- **P91** Space Radiation Effects Experiments (NASA)
- **P92** Key physics study of laser wakefield acceleration utilizing ultrafast CO2 laser and electron (Tsinghua Univ., China)
- **P93** Ramped Beam Generation Using Dielectric Wakefield Structures (RadiaBeam)
- **P94** Key physics study of LPI with NCD plasma using laser machined plasma structure (Tsinghua Univ., China)
- **P95** Pre-bunched Dielectric Laser Acceleration with CO2 Laser (LBNL, BNL)
- **P96** CO2-laser-driven GeV wakefield accelerators with external injection (SUNY SB, UCLA, Un. Texas in Austin, Tsinghua Univ.)
- **P97** Nonlinear Inverse Compton Scattering (UCLA, Tokyo Un.)

Ongoing near-term facility upgrades

- E-Beam:
 - x-band deflection cavity
 - Half-year delay in putting a klystron to service due to accidental venting. Fully recovered.
 - Waveguide in manufacturing. Delivery and installation January 2015.

Ongoing near-term facility upgrades

- CO₂ laser
 - Completed migration to solid-state OPA front end (up to 2TW)
 - CPA tests in progress. Implementation early 2015 (~4TW)
 - Vacuum transport line in manufacturing.
 - Next R&D on nonlinear compression (~6-8TW)

Present-day CO₂ laser system

New SOLID-STATE INJECTOR

REGEN

MAIN AMPLIFER

• Shorter pulse

Higher energy

Higher repetition rate

- User-friendly
- Shorter start-up, tune-up

CPA simulations

tests are in progress

Principle diagram of 100 TW CO₂ laser

Collection of innovations:

- OPA: fs seed
- Stretcher +
 compressor =
 Chirped pulse
 amplification
- High-pressure, isotopic amplifiers
- Nonlinear compressor

10 J 100 fs 100 TW

Compressor

100-TW CO₂ laser

- Solid-state (por seed-pulse generator 2 TW 3 ps
- Chirped-pulse te Shification

5-10 TW

• New (isotopic) nsen amplifier

25 TW

Nonlinear pulpes impressor

100 TW 100 fs

ATF II upgrade funded by DOE HE under Accelerator Stewardship program

MAJOR FACILITY UPGRADE

ATF vision

Providing users with research opportunities:

- not available elsewhere,
- at the cutting edge of strong-field physics and advanced accelerator science,
- with diverse coverage of Office of Science missions in Accelerator R&D and Stewardship.

Thank you for your attention

ATF organizational chart

ATF is a proposal driven, Program Committee reviewed user facility.

Floor plan of 100 TW CO₂ laser and Ion Acceleration Hall

Diversified scope of research

- The S-band photocathode electron gun 1995, and beam brightness records
- 3.5 MeV acceleration of electrons using the Inverse Cerenkov effect 1995
- Forward Directed Smith-Purcell Radiation from Relativistic Electrons 1995
- Demonstration of Emittance Compensation through the Measurement of the Slice Emittance 1996
- 1 MeV Inverse Free-Electron Laser acceleration experiment 1996
- Experimental Observation of Femtosecond Electron Beam Micro-bunching by Inverse Free-Electron-Laser Acceleration 1998
- Experimental observation of ballistic bunching of relativistic electrons 1996
- Self Amplified Spontaneous Emission (SASE) in the visible 1998
- Precision tomographic measurement of the beam density in phase-space 1998
- Experimental Observation of Suppression of Coherent-Synchrotron-Radiation—Induced Beam-Energy Spread with Shielding Plates 2012
- ☐ Study of wall roughness effects 2012
- ☐ Demonstration of High-Gain Harmonic-Generation FEL 2000

Notable achievements

- ☐ Staged laser accelerator (IFEL) 2000
- A number of records in inverse Compton generation of X-rays 1998-2006-2013
- Demonstration of phasing between longitudinal and transverse components in plasma wakefields 2003
- First staged monoenergetic laser electron acceleration (STELLA) 2004
- Demonstration of particle acceleration by stimulated emission of radiation 2006
- In-depth studies of PWA with multiple electron bunches 2008-present
- Monoenergetic laser-driven proton source by shock wave acceleration 2010
- Demonstration of beam statistical noise reduced below the shot-noise limit 2011
- Phase contrast imaging of bio samples by singleshot picosecond Compton 2011
- Study of shielding effects of coherent synchrotron radiation 2011
- First experimental observation of the Current Filamentation Instability 2012

Color code: HEP BES NP Biomedical